Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 346
Filtrar
1.
PNAS Nexus ; 3(3): pgae079, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38463037

RESUMEN

Biomolecular condensates play a major role in cell compartmentalization, besides membrane-enclosed organelles. The multivalent SLP65 and CIN85 proteins are proximal B-cell antigen receptor (BCR) signal effectors and critical for proper immune responses. In association with intracellular vesicles, the two effector proteins form phase separated condensates prior to antigen stimulation, thereby preparing B lymphocytes for rapid and effective activation upon BCR ligation. Within this tripartite system, 6 proline-rich motifs (PRMs) of SLP65 interact promiscuously with 3 SH3 domains of the CIN85 monomer, establishing 18 individual SH3-PRM interactions whose individual dissociation constants we determined. Based on these 18 dissociation constants, we measured the phase-separation properties of the natural SLP65/CIN85 system as well as designer constructs that emphasize the strongest SH3/PRM interactions. By modeling these various SLP65/CIN85 constructs with the program LASSI (LAttice simulation engine for Sticker and Spacer Interactions), we reproduced the observed phase-separation properties. In addition, LASSI revealed a deviation in the experimental measurement, which was independently identified as a previously unknown intramolecular interaction. Thus, thermodynamic properties of the individual PRM/SH3 interactions allow us to model the phase-separation behavior of the SLP65/CIN85 system faithfully.

3.
Nat Commun ; 15(1): 1297, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351005

RESUMEN

Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disease characterized by the extracellular deposition of amyloid plaques. Investigation into the composition of these plaques revealed a high amount of amyloid-ß (Aß) fibrils and a high concentration of lipids, suggesting that fibril-lipid interactions may also be relevant for the pathogenesis of AD. Therefore, we grew Aß40 fibrils in the presence of lipid vesicles and determined their structure by cryo-electron microscopy (cryo-EM) to high resolution. The fold of the major polymorph is similar to the structure of brain-seeded fibrils reported previously. The majority of the lipids are bound to the fibrils, as we show by cryo-EM and NMR spectroscopy. This apparent lipid extraction from vesicles observed here in vitro provides structural insights into potentially disease-relevant fibril-lipid interactions.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Microscopía por Crioelectrón , Fragmentos de Péptidos/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Lípidos
4.
Nat Commun ; 15(1): 1147, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326304

RESUMEN

If and how proteasomes catalyze not only peptide hydrolysis but also peptide splicing is an open question that has divided the scientific community. The debate has so far been based on immunopeptidomics, in vitro digestions of synthetic polypeptides as well as ex vivo and in vivo experiments, which could only indirectly describe proteasome-catalyzed peptide splicing of full-length proteins. Here we develop a workflow-and cognate software - to analyze proteasome-generated non-spliced and spliced peptides produced from entire proteins and apply it to in vitro digestions of 15 proteins, including well-known intrinsically disordered proteins such as human tau and α-Synuclein. The results confirm that 20S proteasomes produce a sizeable variety of cis-spliced peptides, whereas trans-spliced peptides are a minority. Both peptide hydrolysis and splicing produce peptides with well-defined characteristics, which hint toward an intricate regulation of both catalytic activities. At protein level, both non-spliced and spliced peptides are not randomly localized within protein sequences, but rather concentrated in hotspots of peptide products, in part driven by protein sequence motifs and proteasomal preferences. At sequence level, the different peptide sequence preference of peptide hydrolysis and peptide splicing suggests a competition between the two catalytic activities of 20S proteasomes during protein degradation.


Asunto(s)
Péptidos , Complejo de la Endopetidasa Proteasomal , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Hidrólisis , Péptidos/metabolismo , Proteínas/metabolismo
5.
J Am Chem Soc ; 146(1): 399-409, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38111344

RESUMEN

Signal transduction by the ligated B cell antigen receptor (BCR) depends on the preorganization of its intracellular components, such as the effector proteins SLP65 and CIN85 within phase-separated condensates. These liquid-like condensates are based on the interaction between three Src homology 3 (SH3) domains and the corresponding proline-rich recognition motifs (PRM) in CIN85 and SLP65, respectively. However, detailed information on the protein conformation and how it impacts the capability of SLP65/CIN85 condensates to orchestrate BCR signal transduction is still lacking. This study identifies a hitherto unknown intramolecular SH3:PRM interaction between the C-terminal SH3 domain (SH3C) of CIN85 and an adjacent PRM. We used high-resolution nuclear magnetic resonance (NMR) experiments to study the flexible linker region containing the PRM and determined the extent of the interaction in multidomain constructs of the protein. Moreover, we observed that the phosphorylation of a serine residue located in the immediate vicinity of the PRM regulates this intramolecular interaction. This allows for a dynamic modulation of CIN85's valency toward SLP65. B cell culture experiments further revealed that the PRM/SH3C interaction is crucial for maintaining the physiological level of SLP65/CIN85 condensate formation, activation-induced membrane recruitment of CIN85, and subsequent mobilization of Ca2+. Our findings therefore suggest that the intramolecular interaction with the adjacent disordered linker is effective in modulating CIN85's valency both in vitro and in vivo. This therefore constitutes a powerful way for the modulation of SLP65/CIN85 condensate formation and subsequent B cell signaling processes within the cell.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/química , Transducción de Señal/fisiología , Dominios Homologos src , Linfocitos B/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Unión Proteica
6.
Nat Chem ; 16(3): 380-388, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38123842

RESUMEN

Cysteine conjugation is an important tool in protein research and relies on fast, mild and chemoselective reactions. Cysteinyl thiols can either be modified with prefunctionalized electrophiles, or converted into electrophiles themselves for functionalization with selected nucleophiles in an independent step. Here we report a bioconjugation strategy that uses a vinyl thianthrenium salt to transform cysteine into a highly reactive electrophilic episulfonium intermediate in situ, to enable conjugation with a diverse set of bioorthogonal nucleophiles in a single step. The reactivity profile can connect several nucleophiles to biomolecules through a short and stable ethylene linker, ideal for introduction of infrared labels, post-translational modifications or NMR probes. In the absence of reactive exogenous nucleophiles, nucleophilic amino acids can react with the episulfonium intermediate for native peptide stapling and protein-protein ligation. Ready synthetic access to isotopologues of vinyl thianthrenium salts enables applications in quantitative proteomics. Such diverse applications demonstrate the utility of vinyl-thianthrenium-based bioconjugation as a fast, selective and broadly applicable tool for chemical biology.


Asunto(s)
Cisteína , Compuestos de Sulfhidrilo , Cisteína/química , Compuestos de Sulfhidrilo/química , Proteínas/química , Aminas/química , Proteómica
7.
Bioengineering (Basel) ; 10(12)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135934

RESUMEN

In the human phonation process, acoustic standing waves in the vocal tract can influence the fluid flow through the glottis as well as vocal fold oscillation. To investigate the amount of acoustic back-coupling, the supraglottal flow field has been recorded via high-speed particle image velocimetry (PIV) in a synthetic larynx model for several configurations with different vocal tract lengths. Based on the obtained velocity fields, acoustic source terms were computed. Additionally, the sound radiation into the far field was recorded via microphone measurements and the vocal fold oscillation via high-speed camera recordings. The PIV measurements revealed that near a vocal tract resonance frequency fR, the vocal fold oscillation frequency fo (and therefore also the flow field's fundamental frequency) jumps onto fR. This is accompanied by a substantial relative increase in aeroacoustic sound generation efficiency. Furthermore, the measurements show that fo-fR-coupling increases vocal efficiency, signal-to-noise ratio, harmonics-to-noise ratio and cepstral peak prominence. At the same time, the glottal volume flow needed for stable vocal fold oscillation decreases strongly. All of this results in an improved voice quality and phonation efficiency so that a person phonating with fo-fR-coupling can phonate longer and with better voice quality.

8.
Bioengineering (Basel) ; 10(12)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38135960

RESUMEN

Sound generation in human phonation and the underlying fluid-structure-acoustic interaction that describes the sound production mechanism are not fully understood. A previous experimental study, with a silicone made vocal fold model connected to a straight vocal tract pipe of fixed length, showed that vibroacoustic coupling can cause a deviation in the vocal fold vibration frequency. This occurred when the fundamental frequency of the vocal fold motion was close to the lowest acoustic resonance frequency of the pipe. What is not fully understood is how the vibroacoustic coupling is influenced by a varying vocal tract length. Presuming that this effect is a pure coupling of the acoustical effects, a numerical simulation model is established based on the computation of the mechanical-acoustic eigenvalue. With varying pipe lengths, the lowest acoustic resonance frequency was adjusted in the experiments and so in the simulation setup. In doing so, the evolution of the vocal folds' coupled eigenvalues and eigenmodes is investigated, which confirms the experimental findings. Finally, it was shown that for normal phonation conditions, the mechanical mode is the most efficient vibration pattern whenever the acoustic resonance of the pipe (lowest formant) is far away from the vocal folds' vibration frequency. Whenever the lowest formant is slightly lower than the mechanical vocal fold eigenfrequency, the coupled vocal fold motion pattern at the formant frequency dominates.

9.
Nat Commun ; 14(1): 6839, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891164

RESUMEN

Alzheimer's disease begins with mild memory loss and slowly destroys memory and thinking. Cognitive impairment in Alzheimer's disease has been associated with the localization of the microtubule-associated protein Tau at the postsynapse. However, the correlation between Tau at the postsynapse and synaptic dysfunction remains unclear. Here, we show that Tau arrests liquid-like droplets formed by the four postsynaptic density proteins PSD-95, GKAP, Shank, Homer in solution, as well as NMDA (N-methyl-D-aspartate)-receptor-associated protein clusters on synthetic membranes. Tau-mediated condensate/cluster arrest critically depends on the binding of multiple interaction motifs of Tau to a canonical GMP-binding pocket in the guanylate kinase domain of PSD-95. We further reveal that competitive binding of a high-affinity phosphorylated peptide to PSD-95 rescues the diffusional dynamics of an NMDA truncated construct, which contains the last five amino acids of the NMDA receptor subunit NR2B fused to the C-terminus of the tetrameric GCN4 coiled-coil domain, in postsynaptic density-like condensates/clusters. Taken together, our findings propose a molecular mechanism where Tau modulates the dynamic properties of the postsynaptic density.


Asunto(s)
Enfermedad de Alzheimer , Péptidos y Proteínas de Señalización Intracelular , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Densidad Postsináptica/metabolismo , N-Metilaspartato , Proteínas de la Membrana/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
10.
JACS Au ; 3(10): 2763-2771, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37885577

RESUMEN

Inspired by the recently proposed transverse mixing optimal control pulses (TROP) approach for improving signal in multidimensional magic-angle spinning (MAS) NMR experiments, we present simplified preservation of equivalent pathways spectroscopy (SPEPS). It transfers both transverse components of magnetization that occur during indirect evolutions, theoretically enabling a √2 improvement in sensitivity for each such dimension. We compare SPEPS transfer with TROP and cross-polarization (CP) using membrane protein and fibril samples at MAS of 55 and 100 kHz. In three-dimensional (3D) (H)CANH spectra, SPEPS outperformed TROP and CP by factors of on average 1.16 and 1.69, respectively, for the membrane protein, but only a marginal improvement of 1.09 was observed for the fibril. These differences are discussed, making note of the longer transfer time used for CP, 14 ms, as compared with 2.9 and 3.6 ms for SPEPS and TROP, respectively. Using SPEPS for two transfers in the 3D (H)CANCO experiment resulted in an even larger benefit in signal intensity, with an average improvement of 1.82 as compared with CP. This results in multifold time savings, in particular considering the weaker peaks that are observed to benefit the most from SPEPS.

11.
Brain Pathol ; 33(5): e13196, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37485772

RESUMEN

Parkinson's disease (PD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB) are neurodegenerative disorders with alpha-synuclein (α-syn) aggregation pathology. Different strains of α-syn with unique properties are suggested to cause distinct clinical and pathological manifestations resulting in PD, MSA, or DLB. To study individual α-syn spreading patterns, we injected α-syn fibrils amplified from brain homogenates of two MSA patients and two PD patients into the brains of C57BI6/J mice. Antibody staining against pS129-α-syn showed that α-syn fibrils amplified from the brain homogenates of the four different patients caused different levels of α-syn spreading. The strongest α-syn pathology was triggered by α-syn fibrils of one of the two MSA patients, followed by comparable pS129-α-syn induction by the second MSA and one PD patient material. Histological analysis using an antibody against Iba1 further showed that the formation of pS129-α-syn is associated with increased microglia activation. In contrast, no differences in dopaminergic neuron numbers or co-localization of α-syn in oligodendrocytes were observed between the different groups. Our data support the spreading of α-syn pathology in MSA, while at the same time pointing to spreading heterogeneity between different patients potentially driven by individual patient immanent factors.


Asunto(s)
Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Sinucleinopatías , Animales , Ratones , alfa-Sinucleína/metabolismo , Anticuerpos , Encéfalo/patología , Atrofia de Múltiples Sistemas/patología , Enfermedad de Parkinson/patología , Sinucleinopatías/patología
12.
Methods Mol Biol ; 2681: 213-229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37405650

RESUMEN

Classical yeast surface display (YSD) antibody immune libraries are generated by a separate amplification of heavy- and light-chain antibody variable regions (VH and VL, respectively) and subsequent random recombination during the molecular cloning procedure. However, each B cell receptor comprises a unique VH-VL combination, which has been selected and affinity matured in vivo for optimal stability and antigen binding. Thus, the native variable chain pairing is important for the functioning and biophysical properties of the respective antibody. Herein, we present a method for the amplification of cognate VH-VL sequences, compatible with both next-generation sequencing (NGS) and YSD library cloning. We employ a single B cell encapsulation in water-in-oil droplets, followed by a one-pot reverse transcription overlap extension PCR (RT-OE-PCR), resulting in a paired VH-VL repertoire from more than a million B cells in a single day.


Asunto(s)
Anticuerpos , Transcripción Reversa , Reacción en Cadena de la Polimerasa , Biblioteca de Genes , Clonación Molecular
13.
Trials ; 24(1): 464, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37475006

RESUMEN

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common malignancy diagnosed in children. At present, the long-term survival from pediatric ALL is well over 90%. However, the probability of event-free survival is reduced if the lumbar puncture (LP) procedures at the beginning of the patient's intrathecal therapy cause blood leakage into the spinal canal and blast cells contaminate the cerebrospinal fluid. According to the literature, such traumatic LP procedures concern one out of five pediatric patients with ALL. Recently, a novel medical device measuring the tissue bioimpedance at the tip of a spinal needle was found feasible in pediatric patients with ALL. The LP procedure was successful at the first attempt in 80% of procedures, and the incidence of traumatic LPs was then 11%. The purpose of the present study is to compare the bioimpedance spinal needle system with the standard clinical practice resting on a conventional spinal needle and investigate its efficacy in clinical practice. METHODS: The study is a multicenter, randomized, two-arm crossover noninferiority trial of pediatric hemato-oncology patients that will be conducted within the usual clinical workflow. Patients' LP procedures will be performed alternately either with the IQ-Tip system (study arm A) or a conventional Quincke-type 22G spinal needle (study arm B). For each enrolled patient, the order of procedures is randomly assigned either as ABAB or BABA. The total number of LP procedures will be at least 300, and the number of procedures per patient between two and four. After each study LP procedure, the performance will be recorded immediately, and 1-week diary-based and 4-week record-based follow-ups on symptoms, complications, and adverse events will be conducted thereafter. The main outcomes are the incidence of traumatic LP, first puncture success rate, and incidence of post-dural puncture headache. DISCUSSION: The present study will provide sound scientific evidence on the clinical benefit, performance, and safety of the novel bioimpedance spinal needle compared with the standard clinical practice of using conventional spinal needles in the LP procedures of pediatric patients with leukemia. TRIAL REGISTRATION: ISRCTN ISRCTN16161453. Registered on 8 July 2022.


Asunto(s)
Leucemia , Cefalea Pospunción de la Duramadre , Humanos , Niño , Punción Espinal/efectos adversos , Punción Espinal/métodos , Agujas/efectos adversos , Estudios Cruzados , Cefalea Pospunción de la Duramadre/etiología , Leucemia/terapia , Leucemia/complicaciones , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
14.
MAbs ; 15(1): 2236265, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469014

RESUMEN

Here, we generated bispecific antibody (bsAb) derivatives that mimic the function of interleukin (IL)-18 based on single domain antibodies (sdAbs) specific to IL-18 Rα and IL-18 Rß. For this, camelids were immunized, followed by yeast surface display (YSD)-enabled discovery of VHHs targeting the individual receptor subunits. Upon reformatting into a strictly monovalent (1 + 1) bispecific sdAb architecture, several bsAbs triggered dose-dependent IL-18 R downstream signaling on IL-18 reporter cells, as well as IFN-γ release by peripheral blood mononuclear cells in the presence of low-dose IL-12. However, compared with IL-18, potencies and efficacies were considerably attenuated. By engineering paratope valencies and the spatial orientation of individual paratopes within the overall design architecture, we were able to generate IL-18 mimetics displaying significantly augmented functionalities, resulting in bispecific cytokine mimetics that were more potent than IL-18 in triggering proinflammatory cytokine release. Furthermore, generated IL-18 mimetics were unaffected from inhibition by IL-18 binding protein decoy receptor. Essentially, we demonstrate that this strategy enables the generation of IL-18 mimetics with tailor-made cytokine functionalities.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos de Dominio Único , Interleucina-18 , Leucocitos Mononucleares , Sitios de Unión de Anticuerpos
15.
ChemMedChem ; 18(16): e202300182, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37377066

RESUMEN

We compared the anti-influenza potencies of 57 adamantyl amines and analogs against influenza A virus with serine-31 M2 proton channel, usually termed as WT M2 channel, which is amantadine sensitive. We also tested a subset of these compounds against viruses with the amantadine-resistant L26F, V27A, A30T, G34E M2 mutant channels. Four compounds inhibited WT M2 virus in vitro with mid-nanomolar potency, with 27 compounds showing sub-micromolar to low micromolar potency. Several compounds inhibited L26F M2 virus in vitro with sub-micromolar to low micromolar potency, but only three compounds blocked L26F M2-mediated proton current as determined by electrophysiology (EP). One compound was found to be a triple blocker of WT, L26F, V27A M2 channels by EP assays, but did not inhibit V27A M2 virus in vitro, and one compound inhibited WT, L26F, V27A M2 in vitro without blocking V27A M2 channel. One compound blocked only L26F M2 channel by EP, but did not inhibit virus replication. The triple blocker compound is as long as rimantadine, but could bind and block V27A M2 channel due to its larger girth as revealed by molecular dynamics simulations, while MAS NMR informed on the interaction of the compound with M2(18-60) WT or L26F or V27A.


Asunto(s)
Gripe Humana , Simulación de Dinámica Molecular , Humanos , Antivirales/química , Aminas/farmacología , Protones , Mutación , Gripe Humana/tratamiento farmacológico , Amantadina/farmacología , Amantadina/uso terapéutico , Proteínas de la Matriz Viral/química , Farmacorresistencia Viral
16.
J Struct Biol X ; 8: 100090, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37363040

RESUMEN

The drug Rimantadine binds to two different sites in the M2 protein from influenza A, a peripheral site and a pore site that is the primary site of efficacy. It remained enigmatic that pore binding did not occur in certain detergent micelles, and in particular incomplete binding was observed in a mixture of lipids selected to match the viral membrane. Here we show that two effects are responsible, namely changes in the protein upon pore binding that prevented detergent solubilization, and slow binding kinetics in the lipid samples. Using 55-100 kHz magic-angle spinning NMR, we characterize kinetics of drug binding in three different lipid environments: DPhPC, DPhPC with cholesterol and viral mimetic membrane lipid bilayers. Slow pharmacological binding kinetics allowed the characterization of spectral changes associated with non-specific binding to the protein periphery in the kinetically trapped pore-apo state. Resonance assignments were determined from a set of proton-detected 3D spectra. Chemical shift changes associated with functional binding in the pore of M2 were tracked in real time in order to estimate the activation energy. The binding kinetics are affected by pH and the lipid environment and in particular cholesterol. We found that the imidazole-imidazole hydrogen bond at residue histidine 37 is a stable feature of the protein across several lipid compositions. Pore binding breaks the imidazole-imidazole hydrogen bond and limits solubilization in DHPC detergent.

17.
Phys Chem Chem Phys ; 25(22): 15099-15103, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37249476

RESUMEN

Little is known about how maturation of Alzheimer's disease-related amyloid ß (Aß) fibrils alters their stability and potentially influences their spreading in the brain. Using high-pressure NMR, we show that progression from early to late Aß40 aggregates enhances the kinetic stability, while ageing during weeks to months enhances their thermodynamic stability.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/química , Espectroscopía de Resonancia Magnética , Amiloide/química , Fragmentos de Péptidos/química
18.
Nat Struct Mol Biol ; 30(7): 926-934, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37217654

RESUMEN

Synaptic vesicles are small membrane-enclosed organelles that store neurotransmitters at presynaptic terminals. The uniform morphology of synaptic vesicles is important for brain function, because it enables the storage of well-defined amounts of neurotransmitters and thus reliable synaptic transmission. Here, we show that the synaptic vesicle membrane protein synaptogyrin cooperates with the lipid phosphatidylserine to remodel the synaptic vesicle membrane. Using NMR spectroscopy, we determine the high-resolution structure of synaptogyrin and identify specific binding sites for phosphatidylserine. We further show that phosphatidylserine binding changes the transmembrane structure of synaptogyrin and is critical for membrane bending and the formation of small vesicles. Cooperative binding of phosphatidylserine to both a cytoplasmic and intravesicular lysine-arginine cluster in synaptogyrin is required for the formation of small vesicles. Together with other synaptic vesicle proteins, synaptogyrin thus can sculpt the membrane of synaptic vesicles.


Asunto(s)
Fosfatidilserinas , Vesículas Sinápticas , Sinaptogirinas/metabolismo , Vesículas Sinápticas/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas de la Membrana/metabolismo , Transmisión Sináptica
19.
Methods ; 214: 18-27, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37037308

RESUMEN

Small molecules that bind to oligomeric protein species such as membrane proteins and fibrils are of clinical interest for development of therapeutics and diagnostics. Definition of the binding site at atomic resolution via NMR is often challenging due to low binding stoichiometry of the small molecule. For fibrils and aggregation intermediates grown in the presence of lipids, we report atomic-resolution contacts to the small molecule at sub nm distance via solid-state NMR using dynamic nuclear polarization (DNP) and orthogonally labelled samples of the protein and the small molecule. We apply this approach to α-synuclein (αS) aggregates in complex with the small molecule anle138b, which is a clinical drug candidate for disease modifying therapy. The small central pyrazole moiety of anle138b is detected in close proximity to the protein backbone and differences in the contacts between fibrils and early intermediates are observed. For intermediate species, the 100 K condition for DNP helps to preserve the aggregation state, while for both fibrils and oligomers, the DNP enhancement is essential to obtain sufficient sensitivity.


Asunto(s)
Pirazoles , alfa-Sinucleína , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Pirazoles/química , Benzodioxoles/química , Espectroscopía de Resonancia Magnética , Agregado de Proteínas
20.
J Phys Chem Lett ; 14(16): 3939-3945, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37078685

RESUMEN

Carbon-carbon dipolar recoupling sequences are frequently used building blocks in routine magic-angle spinning NMR experiments. While broadband homonuclear first-order dipolar recoupling sequences mainly excite intra-residue correlations, selective methods can detect inter-residue transfers and long-range correlations. Here, we present the great offset difference internuclear selective transfer (GODIST) pulse sequence optimized for selective carbonyl or aliphatic recoupling at fast magic-angle spinning, here, 55 kHz. We observe a 3- to 5-fold increase in intensities compared with broadband RFDR recoupling for perdeuterated microcrystalline SH3 and for the membrane protein influenza A M2 in lipid bilayers. In 3D (H)COCO(N)H and (H)CO(CO)NH spectra, inter-residue carbonyl-carbonyl correlations up to about 5 Å are observed in uniformly 13C-labeled proteins.


Asunto(s)
Espectroscopía de Resonancia Magnética , Carbono/química , Membrana Dobles de Lípidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA